
Running Vitess on Kubernetes at
Massive Scale - JD.com case
study.

About PlanetScale

Founded in early 2018 to help operationalize Vitess
• Jiten Vaidya (CEO, Managed teams that

operationalized Vitess at Youtube)
• Sugu Sugumaran (CTO, Vitess community

leader)

Offerings
• Open Source Vitess Support
• Custom Vitess Development
• Kubernetes Deployment Manager
• Cross-cloud DBaaS

Vitess Architecture

shard

vtgate

app server

app server

app server

mysqld

vttablet

master

vtgate

big data

Vitess

lockserver

mysqld

vttablet

mysqld

vttablet

replicas

mysqld

vttablet

big data
replicas

mysqld

vttablet

vtctld

App

Vtgate in Kubernetes

● Stateless proxy
● Accepts connections as a MySQL

compatible server
● Contains GRPC endpoint and

Web UI
● Computes target shards
● Sends queries to vttablets for

targeted shards
● Receives, collates and serves

response to application

● Vtgates can be created as load
increase

● Start n vtgates as a Replica Set
● For co-located workloads start one

vtgate per node and expose with a
ClusterIP

Vtctld in Kubernetes

● Vitess Control Plane
● Serves a Web UI

○ Operational commands
○ Status
○ Topology browser

● Serves an API over GRPC
○ Used by vtctlclient tool

● Supports resharding workflows

● Start one or two vtctld processes
per cell

● Start them as a Deployments
● Expose them behind a Service

lockserver (etcd) in Kubernetes

● Knits the Vitess cluster together
● Backing store for metadata

○ Service discovery
○ Topology
○ VSchema

● Not used for query serving
● Needed for any change in

topology
○ Add a keyspace
○ Add a shard to keyspace
○ Add a tablet to a shard
○ Change master for a shard

● One global cluster
● One cluster per cell (optional)
● Use etcd-operator to spin out a

cluster
● Expose etcd cluster behind a

Service

Tablet (vttablet + mysqld) in Kubernetes

● Vitess Tablet is a combination of a
mysqld instance and a
corresponding vttablet process

● Each tablet requires a unique id in
Vitess cluster

● Tablets can be of type: master,
replica, rdonly

● Tablets of type “replica” can be
promoted to master and should
have low replica lag

● 2 containers in the same pod
● Communicate over Unix socket
● Unix socket created in Shared

Volume
● Local Persistent Volume for data
● One master, 2 replicas with

semi-sync replication enabled for
high availability

● Replicas should not be co-located
with other members of shard (
Anti-Affinity)

Authentication/Secrets management

● What secrets are needed?
○ Application -> Vtgate authentication
○ Vttablet -> mysqld authentication for various roles that

Vitess supports (app, dba, replication, filtered replication
etc).

○ TLS certs and keys for GRPC traffic over TLS (optional)
○ TLS certs and keys for binary logs over TLS (optional)
○ TLS certs and keys for client authorization and

authentication over TLS (optional)
● Use Kubernetes Secrets and mount them in pods

High Availability

● Planned reparent
○ Coordinated via lockserver
○ Existing transactions are allowed to complete
○ New transactions are buffered by vtgate
○ New master is made writable
○ Replicas are made slaves of the new master
○ Query serving is resumed

● Unplanned reparent
○ Orchestrator
○ TabletExternallyReparented

● Resharding
○ No interruption to query traffic during resharding

Supporting multiple cells

● Vitess cell is the equivalent of a failure domain (e.g. AWS
availability zones or regions)

● Not necessarily the same as Kubernetes failure domain.
● Choice to use global lockserver cluster OR use one

lockserver cluster per cell.
● Global lockserver cluster typically outside of Kubernetes.
● Expose lockserver behind a service definition.
● If using etcd use etcd-operator to start per cell cluster.

Vitess clusters spanning Kubernetes
clusters

● Global lockserver cluster should be outside of Kubernetes
● While creating each cell designate which Kubernetes cluster

it resides in
● Must have a non-overlapping ip space and all addresses

must be routable.
● pod to pod communication

○ Needed for mysql replication and query serving
○ Achieved by Peering and Routing

About JD.COM

• One of the two biggest e-commerce companies in China
• The largest Chinese retailer
• 300 million active users

• First Chinese internet company to make the Fortune Global 500
• Largest e-commerce logistics infrastructure in China

• Covering 99% of population
• Strategic Partnerships

• Tencent
• Walmart
• Google

Database Management Challenges at JD.com

• use multiple mysql clusters
• routing the query
• implement the query across

multiple clusters.

Application

• Pre-allocated resources,
resource usage is low.

Resource

• No anti-affinity

Robustness

• Expand cluster manually
• Reshard cluster manually

OPS

Why Vitess

Online Split
• Realize the database cluster splitting online with

stoping write in seconds

Functions cross shards
• Queries cross shards
• Transparent routing
• Realize the atomicity of transaction with the 2PC

model

MySQL Protocol Compatibility
• Supports most SQL query statements
• Is compatible with mysql client and mysql JDBC

driver

Integration with kubernetes
Vitess can integrated with kubernetes natively and 80%
of databases run on docker in JD.COM，these container
is scheduled and managed by kubernetes.

MySQL

RoadMap

Say GoodBye to
JProxy，use vitess

Use Vitess first

Settlement system、

B2B price、Product、
After-sales and Order
details filing system

Domestic deployment
across multiple IDC

Thailand, Indonesia
and other countries

Support overseas businessSupport important
core systems

5 IDC in China
Support 1,500 business systems
in China

2017-01 2017-06 2017-12 2018-9

Deployment

Deployment
KeySpace:1911
DataCenter：8
Shard：4438
Tablet：11416
Tables：552104
Most Shards/KeySpace:72

Data Size
146 TB
252 billion Rows

Support Business
project：1731
business： Settlement system、 order
details system、B2B Price、Cis_pop、
Logistics billing system、Coupon and so
on, OLTP

Increase
10 KeySpaces/week
10TB/week
20 billion Rows/week

MySQL

The world’s largest and most complex Vitess deployment

Deployment

JD’S Work On Vitess

• Fixed 20 Bugs
• Polling channels closed leads to high CPU utilization #3745
• Vttablet always in restore state after restart #3885
• Cannot parse SQL with some special annotations #3807
• Thread safety issues during resharding #3029
• Vtgate returns non-utf8 encoded string #2583
• Rename table bug #3774
• Refact the way of storing content in vschema

Bug Fix

• The parallel copying
• The performance of VtGate is doubled by

controlling GC frequency
• Improve the performance of sorted queries by

streaming queries

Performance improvement

• multi-Query #3683
• Begin、commit、rollback support #3671
• Specail sql suport #3801
• Prepare #3864
• Set and auto commit #3896
• Distinct、Load、Union、Exists、ZeroFill、Having

Improve the grammar

• mysql-client
• jdbc-driver
• php driver
• node js drvier
• COM_FILED_LIST #3936

MySQL Protocal

JD’S Work On Vitess

• JTransfer
• BinLake
• Data access audit
• Manage System

Ecological

Local instant capacity expansion
Split with one action
Anti-compatibility scheduling

Elastic scaling

• All In One Container
• OverUse OF CPU
• 1 master、1 replication 1 readonly

Improve Resource utilization

• RocksDB
• TokuDB

Multiple engine

Challenges

Slow
Manual

Splitting

Can not scale up immediately

Scale Up
The design

 of metadata storage result in
can not deploy too large vitess

cluster

MetaData
The design of orchestrator

result in can not manager too
many instances

orchestrator

Solutions

Splitting

Challenge
• There are many instances with the amount of data that more

than 1 TB, lead to the split of these instances process is very
slow

• There are too many business system, so it is not practical to
split each shard manually

Solution
• Control the amount of data each shard strictly , make it less than 512 GB
• Parallel copy and replication, speed up the split process
• Realize the function of a key split, can automatically or manually triggered

Solutions

Scale Up

Challenge
• Peak twice every year: 618 and 11.11
• JD often make promotion
• We need to be able to improve database service ability

rapidly

Solution
• Increase CPU locally without service down
• Monitor the load of physical machines and pods
• Migration with one click

Solutions

Metadata

Challenge
• So many keyspace and vschema storage design result in

the vschema info’s size if larger than 1.5 MB which seriously
affects the stability of etcd and leads to etcd instance oom
frequently

Solution
• Store url in vschema，and get the contents of vschema from the url
• Split the value of entire vschema into the metadata of many individual keyspaces

Solutions

orchestrator

Challenge
• When the cluster monitored by orchestrator has more than

5,000 instances, the orchestrator always changing leader
looply and to can not provide services

Solution
• One orchestrator per cell
• Control the number of instances in one cell below 5000

Ongoing Work And Next Step

Each Worker is responsible for splitting up a Shard
and achieving the independence of each Worker
splitting without mutual influence.

Resharding Isolation

Vschena’s content is currently stored in one Value
We will split the vschema’s content into many
individual keyspace content

Refact VSchema

Automatic scaling capacity, splitting and migration of
database load are realized based on monitoring data

Auto-Balance

